
An Open-Source SIFT Library

Rob Hess
School of EECS, Oregon State University

Corvallis, Oregon, USA
hess@eecs.oregonstate.edu

ABSTRACT
Recent years have seen an explosion in the use of invari-
ant keypoint methods across nearly every area of computer
vision research. Since its introduction, the scale-invariant
feature transform (SIFT) has been one of the most effective
and widely-used of these methods and has served as a major
catalyst in their popularization. In this paper, I present an
open-source SIFT library, implemented in C and freely avail-
able at http://eecs.oregonstate.edu/~hess/sift.html,
and I briefly compare its performance with that of the orig-
inal SIFT executable released by David Lowe.

Categories and Subject Descriptors
I.4.7 [Computing Methodologies]: Image Processing and
Computer Vision—Feature Measurement ; D.0 [Software]:
General

General Terms
Algorithms

Keywords
Open-Source, SIFT, Library, Keypoints, Image Features

1. INTRODUCTION
Invariant local image features fill a fundamental role in

computer vision by facilitating the computation of image
correspondences at both the point and patch levels. Due
to advances in recent years in the detection and description
of robust local features, their use has become prevalent in
nearly every area of computer vision research, from 3D vision
[12, 5], to object recognition [6, 9], to robot localization
and mapping [14, 11], to object tracking [3, 13], and almost
everywhere in between.

The scale-invariant feature transform, or SIFT algorithm
[7, 8], is today among the most well-known and widely-used
invariant local feature methods, and because it was one of

Permission to make digital or hard copies of all or part of this work for
personal or classroom use is granted without fee provided that copies are
not made or distributed for profit or commercial advantage and that copies
bear this notice and the full citation on the first page. To copy otherwise, to
republish, to post on servers or to redistribute to lists, requires prior specific
permission and/or a fee.
MM’10 October 25–29, Firenze Italy
Copyright 2010 ACM 978-1-60558-933-6/10/10 ...$10.00.

the first of these methods to combine invariance to rotation,
scale, and a wide range of both affine transformation and
illumination change with a robust descriptor that can be re-
liably matched against a large database, the SIFT algorithm
itself played a major role in driving the popularity of invari-
ant local image feature methods in the early part of the last
decade.

Unfortunately, despite SIFT’s immense popularity, David
Lowe, SIFT’s creator, released the algorithm only in binary
executable format, leaving the need for a general-purpose,
linkable library of SIFT routines that could be easily in-
corporated by developers into computer vision software. As
part of my own computer vision research, I implemented in C
a version of the SIFT algorithm—based faithfully on Lowe’s
seminal 2004 paper [8]—using the popular open-source com-
puter vision library OpenCV [10]. Convinced of its potential
usefulness to the general computer vision community, I re-
leased my SIFT implementation in 2006 as an open-source
library. At the time of its release, this was the first open-
source version of the SIFT algorithm publicly available, and
since its release, it has grown considerably in popularity.1

In this paper, I describe in brief detail the SIFT algorithm
and my open-source SIFT library’s implementation of it, and
I briefly compare the performance of the SIFT library with
that of the original SIFT executable.

2. THE SIFT ALGORITHM
The SIFT algorithm operates in four major stages to de-

tect and describe local features, or keypoints, in an image:

1. Detection of extrema in scale space

2. Sub-unit localization and filtering of keypoints

3. Assignment of canonical orientations to keypoints

4. Computation of keypoint descriptors

Scale-space extrema detection. The SIFT algorithm
begins by identifying the locations of candidate keypoints
as the local maxima and minima of a difference-of-Gaussian
pyramid that approximates the second-order derivatives of
the image’s scale space. The interested reader should refer
to [8] for a thorough justification of this approach.
Keypoint localization and filtering. After candidate
keypoints are identified, their locations in scale space are in-
terpolated to sub-unit accuracy, and interpolated keypoints
with low contrast or a high edge response—computed based

1The open-source SIFT library described here is available
at http://eecs.oregonstate.edu/~hess/sift.html.

on the ratio of principal curvatures—are rejected due to po-
tential instability.
Orientation assignment. The keypoints that survive fil-
tering are assigned one or more canonical orientations based
on the dominant directions of the local scale-space gradients.
After orientation assignment, each keypoint’s descriptor can
be computed relative to the keypoint’s location, scale, and
orientation to provide invariance to these transformations.
Descriptor computation. Finally, a descriptor is com-
puted for each keypoint by partitioning the scale-space re-
gion around the keypoint into a grid, computing a histogram
of local gradient directions within each grid square, and con-
catenating those histograms into a vector. To provide invari-
ance to illumination change, each descriptor vector is nor-
malized to unit length, thresholded to reduce the influence
of large gradient values, and then renormalized.

Again, the interested reader should refer to [8] for a more
detailed description of the SIFT algorithm.

3. THE OPEN-SOURCE SIFT LIBRARY
The open-source SIFT library is written in C, with ver-

sions available for both Linux and Windows, and it uses the
popular open-source computer vision library OpenCV [10].
In particular, the SIFT library’s function API uses OpenCV
data types to represent images, matrices, etc., making it easy
to incorporate SIFT functions into existing OpenCV-based
vision code. In addition, all internal operations in the SIFT
library are performed using OpenCV functions.

The SIFT library itself contains four main components,
each represented by a different header file. I describe these
separately below. Afterwards, I describe three simple exam-
ple applications that are also included with the SIFT library.

3.1 SIFT Library Components
SIFT keypoint detection. The main component of the
library is a set of functions for detecting SIFT keypoints.
Specifically, the library contains two SIFT keypoint detec-
tion functions (located in the sift.h header file), one that
computes SIFT keypoints using the default parameter set-
tings suggested in Lowe’s paper [8] and another that allows
the user to set parameters as they desire.

These functions are designed to be easy to call. Specif-
ically, they require no calls to initialization functions and
accept both grayscale and RGB images (RGB images are
converted to grayscale internally). In particular, the follow-
ing code snippet is all that is necessary to compute SIFT
features in a color image loaded from file.

IplImage* img; /* OpenCV image type */
struct feature* keypoints; /* SIFT library keypoint type */
int n; /* feature count */

/* load image using OpenCV and detect keypoints */
img = cvLoadImage("/path/to/image.png", 1);
n = sift_features(img, &keypoints);

Figure 1 depicts keypoints detected using the SIFT library.
For comparison, keypoints detected using David Lowe’s ex-
ecutable SIFT software2 are also depicted in Figure 1.
Kd-tree keypoint database formation. The ability to
efficiently match SIFT keypoints from a given image against
ones from another image or from a large keypoint database
is fundamental. In [1], Beis and Lowe describe a method

2http://www.cs.ubc.ca/~lowe/keypoints/

(a) Open-source SIFT Library

(b) Lowe’s SIFT Executable

Figure 1: SIFT keypoints detected using (a) the
open-source SIFT library described in this paper,
and (b) David Lowe’s SIFT executable.

to facilitate efficient keypoint matching using a kd-tree and
an approximate (but correct with very high probability)
nearest-neighbor search. The SIFT library also contains
structures and functions (located in the kdtree.h header
file) implementing this method, as well as the local keypoint
matching method described in [5].
RANSAC transform computation. SIFT keypoints and
other local image features are commonly used to compute
transforms—fundamental matrices or planar homographies,
for example—between images. In particular, once image fea-
tures are matched between the images, the correspondences
thus formed can be used to analytically compute the de-
sired transform. The RANSAC algorithm [2] is widely used
to perform this computation under the possible presence of
outlier feature matches.

Included with the SIFT library (in the xform.h header
file) is a set of functions for using RANSAC to compute im-
age transforms from feature matches. These functions are
designed to be flexible. In particular, the transform func-
tion itself is an argument to the library’s RANSAC function.
Thus, the developer is free to implement any function he or
she wishes for computing transforms from 2D point corre-
spondences. The implementation must only comply with
the function prototypes defined in the library. As an exam-
ple, the library includes functions that can be used in con-
junction with RANSAC to compute planar homographies
between images.

(a) (b)

Figure 2: (a) Matches computed between SIFT keypoint in two images using the SIFT library’s kd-tree
functions. (b) A transform computed between the two images based on the keypoint matches in (a) using
the SIFT library’s RANSAC functions.

Figure 2 depicts SIFT keypoint matches computed be-
tween two images using the SIFT library’s kd-tree functions
described above and a transform computed based on the
matched keypoints using the library’s RANSAC functions.
Invariant image feature handling. Finally, the SIFT
library also contains a set of structures and functions for
working with invariant image feature data, including data
generated by other software. In particular, this component
of the library contains a data structure to represent image
feature data and functions to import and export keypoints
computed using the library’s own SIFT functions, as well
as SIFT features computed using David Lowe’s SIFT ex-
ecutable and the affine-covariant features computed by the
Oxford Visual Geometry Group’s software3. Using this func-
tionality (located in the imgfeatures.h header file), the kd-
tree and RANSAC functions described above can be applied
to any of these types of features.

3.2 Example applications
The SIFT library also contains three very simple exam-

ple applications—described below—that demonstrate the li-
brary’s functionality.

• siftfeat.c: This application simply computes SIFT
keypoints in an image and exports them to file. The
keypoints depicted in Figure 1(a) were computed using
this application.

• match.c: This application computes matches between
SIFT keypoints detected in two images using the li-
brary’s kd-tree functions and optionally computes a
transform based on those matches using the library’s
RANSAC functions. The images in Figure 2 were gen-
erated using this application.

• dspfeat.c: This application imports and displays im-
age features from any compatible software. The images
in Figure 1 depicting SIFT keypoints from the SIFT
library and from David Lowe’s SIFT executable were
generated using this application, as was the image in
Figure 3 depicting Harris-affine features computed us-
ing the Oxford Visual Geometry Group’s software.

3http://www.robots.ox.ac.uk/~vgg/research/affine/
index.html

Figure 3: Harris-affine image features computed us-
ing the Oxford Visual Geometry Group’s software
and displayed using functions from the SIFT library.

4. PERFORMANCE
Below I compare the performance of the SIFT library with

that of David Lowe’s executable in terms of runtime and
matching and transform accuracy.

4.1 Runtime
Table 1 compares the runtime for SIFT feature computa-

tion for the SIFT library and David Lowe’s SIFT executable.
The runtimes reported were averaged over the 209-image
“people” collection of the Caltech-256 data set [4]. The av-
erage area of the images tested was 285350 sq. pixels. The
runtimes for the two implementations are comparable.

Average Runtime

SIFT Library 1.81s
Lowe’s Executable 1.68s

Table 1: A runtime comparison between the SIFT li-
brary and David Lowe’s SIFT executable. Runtimes
are averaged over the 209 image “people” collection
of the Caltech-256 data set.

4.2 Matching and Transform Accuracy
Table 2 compares the keypoint matching and transform

computation accuracy for the SIFT library and David Lowe’s
SIFT executable. These results were obtained by applying a

Keypoints Match Avg. Transform
Matched Percentage MSE (px. sq.)

SIFT Library 858 of 3705 23.2% 0.172
Lowe’s Executable 1087 of 4635 23.5% 0.061

Table 2: A comparison of keypoint matching and
computed transform accuracy between the SIFT li-
brary and David Lowe’s SIFT executable. These are
computed over a randomly chosen set of ten images
from the Caltech-256 datsaet. See the text for more
details.

random perspective transform to each of 10 randomly chosen
images from the Caltech-256 dataset, computing keypoint
matches between the original and transformed images, and
then using RANSAC to compute a perspective transform
based on those matches. Transform accuracy is reported as
the MSE between original keypoint locations transformed
by both the computed and ground-truth perspective trans-
forms, averaged over the ten images. Again, the perfor-
mance of the two implementations is comparable.

5. REFERENCES
[1] J. S. Beis and D. G. Lowe. Shape indexing using

approximate nearest-neighbor search in
high-dimensional spaces. In CVPR, 2003.

[2] M. A. Fischler and R. C. Bolles. Random sample
consensus: a paradigm for model fitting with
applications to image analysis and automated
cartography. Communications of the ACM, 24(6),
1981.

[3] H. Grabner, J. Matas, L. Van Gool, and P. Cattin.
Tracking the invisible: Learning where the object
might be. In CVPR, 2010.

[4] G. Griffin, A. Holub, and P. Perona. Caltech-256
object category dataset. Technical Report 7694,
California Institute of Technology, 2007.

[5] R. Hess and A. Fern. Improved video registration
using non-distinctive local image features. In CVPR,
2007.

[6] B. Leibe, A. Leonardis, and S. Bernt. Robust object
detection with interleaved categorization and
segmentation. IJCV, 77(1–3), 2008.

[7] D. G. Lowe. Object recognition from local
scale-invariant features. In ICCV, 1999.

[8] D. G. Lowe. Distinctive image features from
scale-invariant keypoints. Intl. Journal of Computer
Vision, 60(2):91–110, 2004.

[9] A. Opelt, A. Pinz, M. Fussenegger, and P. Auer.
Generic object recognition with boosting. IEEE
TPAMI, 28(3), 2006.

[10] OpenCV. http://opencv.willowgarage.com/.

[11] S. Se, D. G. Lowe, and J. J. Little. Vision-based global
localization and mapping for mobile robots. IEEE
T-RO, 21(3), 2005.

[12] N. Snavely, R. Garg, S. M. Seitz, and R. Szeliski.
Finding paths through the world’s photos. ACM TOG
(Proceedings of SIGGRAPH 2008), 27(3), 2008.

[13] S. Tran and L. Davis. Robust object tracking with
regional affine invariant features. In ICCV, 2007.

[14] B. Williams, G. Klein, and I. Reid. Real-time SLAM
relocalization. In ICCV, 2007.

